The IMLOG10 function returns the common logarithm (base 10) of a complex number in x + yi or x + yj text format

**Syntax**:= IMLOG10(inumber)

The IMLOG10 function syntax has the following arguments:

**Inumber**Required. A complex number for which you want the common logarithm

**Example**: Let’s look at some Excel IMLOG10 function examples and explore how to use the IMLOG10 function as a worksheet function in Microsoft Excel:

**Syntax**: =IMLOG10(A2)

**Result**:

Based on the Excel spreadsheet above, the following IMLOG10 examples would return:

**Syntax**: =IMLOG10(A3)

**Result**: 0.349485002168009-0.480828578784234i

**Syntax**: =IMLOG10(A4)

**Result**: 0.698970004336019+0.402719196273373i

**Syntax**: =IMLOG10(A5)

**Result**: 0.430169003285497-0.165251819908898i

**Syntax**: =IMLOG10(A6)

**Result**: 0.602059991327962

**Syntax**: =IMLOG10(A7)

**Result**: 1.38021124171161+0.682188176920921i

**Syntax**: =IMLOG10(A8)

**Result**: 0.977121254719662+0.139734490323774i

**Syntax**: =IMLOG10(A9)

**Result**: 0.806391928359868+0.389151908999031i

**Syntax**: =IMLOG10(A10)

**Result**: 1.09794982620462-0.465324651138761i

**Syntax**: =IMLOG10(A11)

**Result**: 1.11394335230684-0.510732572130908i

**Syntax**: =IMLOG10(A12)

**Result**: 1.34948500216801-0.480828578784234j

**Syntax**: =IMLOG10(A13)

**Result**: 2.38219642590089+0.640695004283087i

**Note**:

- Complex Numbers in Excel are simply stored as text.
- When a text string in the format “a + bi” or “a + bj” is supplied to one of Excel’s built-in Complex Number Functions, this is interpreted as a complex number.
- The complex number functions can accept a simple numeric value, as this is equivalent to a complex number whose imaginary coefficient is equal to 0.
- Use COMPLEX to convert real and imaginary coefficients into a complex number.
- If inumber is not recognized as a complex number, IMLOG10 returns the #NUM! error.
- If inumber is a logical value, IMLOG10 returns the #VALUE! error
- The common logarithm of a complex number can be calculated from the natural logarithm as follows: